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Abstract. The repulsive Lorentz force between two vortices in high-« superconductors with
the vortices alipned along the direction of axial symmetsy was calculated by approximating the
numerical integral by a set of polynomials to speed up the computations.  Calculations were
carried out to simulate formation of hexagonal vortex lattice from a population of 400 initially
randomly distributed vortices. Small domains with different alignments of vortices were found
at the early stages, and a single large domain with hexagonal order aligned with the edges
emerged at the end. Also, the expansion of a vortex population was simulated and it kept its
initial shape while it expanded isctopically outward into a larger area.  The force exerted on
a displaced vortex in an otherwise perfect lattice was calculated and it was found to be about
the same order of magnitude as the force hetween two isolated vortices, and about ten times
stronger than the force exerted on an extra interstitial vortex.

1. Introduction

One of the main problems that holds up the development of material high-temperature
superconductors is the necessity to acquire a more complete understanding of the dynamics
of flux lattice motion. Such motion involves the motion of individual vortices acting under
the influence of strong forces from nearby vortices and weaker forces from more distant
vortices. Pinning centres exert forces which can hold vortices in place, and the presence
of transport current adds an additional force. The application of an applied magnetic field
causes vortices to move into the superconductor. Vortices in motion also experience magnus
forces and frictional drag forces. A proper understanding of how non-equilibrium vortex
configurations evolve toward configurations that are in equilibrium with the internal and
external forces can lead to the development of critical current enhancement techniques.

In the present article we will study the motion of an initial random distribution of
vortices as they rearrange themselves into a final close-to-equilibrium configuration of a
hexadic type. We will also investigate the force on a vortex displaced from its equilibrium
position on an otherwise perfect hexadic lattice, and the force on an extra vortex at an
arbitrary interstitial location in a perfect hexadic lattice.

2. Vortex arrays

At the lower critical field H;y, an applied magnetic field starts to penetrate a type-IE
superconductor in the form of quantized magnetic vortices [1] carrying a quantum of flux
®g. A vortex consists of a normal-like region called the core with a radius equal to the
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coherence length &, and a region of circulating screening current J with a radivs equal to
the penetration depth A. When the density of vortices is so low that their average separation
is much larger than A, the forces between them can easily be calculated through the Lorentz
force expression, F' = J X Py, since the currents of one vortex can be assumed uniform
over the region of the other vortex [2]. When the density of vortices increases to a point
where the average distance between them is comparable with A, then the force can no longer
be calculated in this simple way, so the integral of J x B must be evaluated,

In this paper, first the Lorentz force was evaluated through the numerical integration
of J x B, and then this integral was replaced by a polynomial approximation to shorten
the computer time. The formation of a hexagonal vortex lattice was simulated starting with
a random population of 400 vortices. Then the expansion of a random vortex area into a
larger area was simulated. In the last section, the force exerted on a displaced and on an
Interstitial vortex in an otherwise perfect hexagonal vortex lattice was studied.

3. Lorentz force between two vortices

The London equations can be used to treat the vortices up to the density where they have the
separation D = 5.4£ [3,4] which corresponds to an applied field of about 1 H,, for k = A/
= 100. This approach is especially appropriate for high-x cases such as the cuprates, where
the core region can be treated as point-like compared with the penetration depth A,

The field and the carrent distributions of a single vortex obtained by solving the London
equations in an isotropic plane are given by 5, 6]

P
B(r) = 53 Ko(r/A) )
o
TOY = 5 Ka/Y) @)

where Ko{r/A) and K\){(r/A) are zeroth- and first-order modified Bessel functions,
respectively. The vortices are assumed to be aligned with the symmetry of the axially
symmetric superconductor.

Figure 1. Position coordinates used for the calculation of the Lorentz force between two vortices
by integration. J; and J2 are circulating supercurrents of vortices vi and v2,

Using the field and the current distributions given by equations (1) and (2), the
differential force density df(r) exerted at the point P in figure 1 on the screening current
of vortex v2 by the field of the vortex vl is given by

df(r) = dJo(r) x Bi(lr — D} 3



7375

Vortex interactions for high-x superconductors

where D is the separation of the two vortices. The force on the whole current ring of radius
r is then the integral of d f(r) over the ring. Another integral over the rings with different
radii gives the total force per unit length F'(D) exerted on the vortex v2 by the vortex v1.
Since we are not interested in the length of the vortices we will call F(D) simply the force
between vortices. This Lorentz force is along the line that connects the two vortices, and
is repulsive. Figure 2 shows this force F(D) calculated as a function of their separation.
The plot is normalized to a value close to 1 at its maximum point, and this normalization
condition is used for the rest of the paper.

The force F(D) goes to zero as the separation D goes to zero at the total overlap
of vortices. It must, however, be remembered that the superconductivity is lost when the
average separation becomes comparable with the coherence length. The repulsive force

reaches its maximum at about D = 0.5A.
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to 095 at the maximum, and the separation is

normalized to the penetration depth A.

The numerical integral calculations take about i-2 s of CPU time per pair of vortices.
When many vortices are present, the force F on a particular vortex at position rg is the
vector sum of the forces F1(r; — rp) exerted on it by all the other vortices. Computations
involving many vortices can be limited by the available computer time. For example
a simulation involving 400 vortices requires 160000 force calculations for a single step
toward determining the total forces on all the vortices, and this can add up to 50 or more
hours of CPU time. Using a linear regressional fit, a set of polynomials was fitted to the
force curve of figure 2. This considerably reduces the computer time, and the result plotted
in figure 3 shows the excellent agreement between the actual integration and the polynomial

approximation for the range 0 < D < 6A.

4. Simulations of & vortex lattice

The repulsive Lorentz force canses the vortices to average themselves on a triangular lattice
to their lowest-energy state. The formation of this vortex lattice is studied by calculations



7376 S Aktas et al

which involve the determination of the force on an individual vortex arising from the vector
sum of the forces from each of the remaining 399 vortices. The magnitude of each such
individual force is obtained from the polynomial approximation. After obtaining this net
force the vortex is moved a distance Ar in the direction of this force, with all of the other
vortices held in place.

Vortices near the edge of the superconductor experience an additional surface force
from the applied external field which prevents them from leaving the material. This surface
repulsive force is assumed to decay exponentially with distance from the surface to the
inside. Thus a vortex a distance d from the edge experiences the force Foe™#/* acting away
from the edge. The value of Fo was found by trial and exror such that the vortices are held
inside the superconducting material within one penetration depth A of the edge.

The net force acting on each vortex is thus the sum of the Lorentz forces from the other
399 vortices pius the sum of the forces from the four edges of the square region containing
the vortices, Since the vortex motion involves displacements Ar that are determined by this
net force there is no equation of motion needed to describe the displacements. The vortices
remain fixed in position between iterations, and only one vortex is displaced at a time,

To start with the simulation, 400 random vortices are put in a square with sides equal
to 40 A. One voriex is selected and the vector force on it due to the remaining 399 vortices
plus that from the four edges is calculated. The vortex is then moved a distance Ar = 0.1A
in the direction of this force. This process is then repeated for the remaining 399 vortices.
The resulting change in vortex configuration from the initial random one is called a move.
The whole process itself is repeated until the effect of further iterations becomes negligible.
After every 10 or 20 moves the distance of the displacement Ar is decreased until it becomes
0.01A for the final 300 moves.

Figure 4 shows the initial random vortex distribution. Figures 4(b} to 4(d) display the
evolution toward a hexagonal arrangement. Figure 4(b) exhibits the beginning of triangular
short-range order in the centre and linear alignment along the edges after 50 moves. Then
400 moves later we see from figure 4(c) that the hexagons are more regular, those near
edges tend to align with edges, and centrally located vortices tend to align with the left and
right edges. At the corners, vortices tend to form square patterns in order to comply with the
corner geometry. At this stage there are not many regular hexagons. Figure 4(d) confirms
the left-right edge alignment which covers most of the square with a regular hexagonal
order after 2000 moves.

Thus from the beginning, the edge effect is a dominant factor in determining the final
alignment of hexagons. In order to minimize the edge effect, an initial random vortex
distribution was established in a 20X x 20A square region at the centre of a 40 x 404
square away from the edges. This reduces the influence of edges on the vortices at the
early stages of the iteration. Figure 5(a) shows the initial random arrangement. After 50
moves, figure 5(b) displays the outward advancement of the vortex region. Apart from
expanding outward, the vortices reach a fairly uniform distribution among themselves with
the beginnings of hexagonal order, and they start to pile up at the boundary while the
boundary keeps its square shape. After 400 moves, figure 5(c) displays the growth of the
hexagonally ordered central domain in which the hexagons are not aligned with the edges.
The vortices pile up along edges and at corners. Figure 5(d) after 2000 moves shows that
the central domain grows to a larger area and becomes more regular while it still does not
align with the edges. The pre-established hexagonal order in the centre is relatively stable
against the edge effect.

‘When the final pictures of these two different simulations are examined, we see that
the long-range hexagonal order is broken at the boundaries of domains where there are
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Figure 4. Plots of positions of 400 vortices on 40\ x 40X square. (a) Initial random atrangement,
(b) 50 moves later, (¢} after 400 moves, and (d) after 2000 moves.

deformed hexagons. A deformed hexagon of a simplest type has a displaced vortex or an
extra (interstitial} vortex within an hexagonal unit. By examining the force exerted on these
‘improperly located’ vortices, we may get an insight on the strength of a possible pinning
which may lead to similar kinds of deformed hexagons.

5. Defects in a vortex lattice

The simplest case to treat is that of one improperly located vortex in an otherwise perfect
hexagonal vortex lattice. Although this may represent an oversimplification, it could give
us some basic insights on the behaviour of defects. Two cases were treated; (a) a displaced

vortex, and (b) an interstitial vortex.

(a) Displaced vortex. The triangular vortex lattice was viewed from a central lattice
point with surrounding hexagonal vortex rings. The displacement of the vortex at this point
was studied by assuming that all the other vortices in the lattice are held at their proper
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Figure 5, Plots of positions of 400 vortices placed initially in a 20X x 204 square centred inside
a 40 x 40X square. (a) Initial random position, (b) expansion after 50 moves, (c) after 400
moves, and (d) configuration after 2000 moves.

hexagonal sites. The displacement was specified by a radial distance r, and angle ¢ as seen
in figure 6. The total force on this displaced vortex was calculated for a series of angles
¢, and radial disptacements r. Figure 7 shows the radial dependence of the force exerted
on the displaced vortex where two extreme cases of angles (¢ = 0° and ¢ = 30°) were
plotted. It is sufficient to cover the angular range of 0° < ¢ < 30° because of the 12-fold
symmeiry. The force rises linearly for both angles when the displacement # is small, and it
is always directed toward the centre of the hexagon (the angles of the force are not shown
in the figure). This resembles the restoring force of a spring. We see from figure 8 that the
force is greater for D = A than it is for D = %A and D = 2A but the change in magnitude
is small,

(b) Interstitial vortex. Another possible type of defect is having an extra vortex inserted
at an interstitial position in the lattice. The same kind of calculation was repeated for this
case, and the results are plotted in figure 9 for three angles ¢ = 0°, 15°, 30°. The ¢ =0
line goes from vortex v to v through the saddle points, the ¢ = 30° line goes from vortex v
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Figure 7. Dependence of the force exerted on the
displaced vortex of figure 6, on the radial displacement
r. The circles are for radial displacements at the angle
8§ = 0°, and the triangles for displacements at the angle
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Figure 6. Vortex (designated by a hollow circle) shown displaced at the position, (r, #) from
the centre of the regular hexagon. [ is the separation of vortices in the lattice.
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Figure 8. Dependence of the force on the displaced
vortex of figure 6 on the radial displacement » at the
angle & = 0° for three lattice separations D/A = 1/2,

through the midpoint M and then through the saddle point §', using the notation of figure 10.
There are two equilibrium positions shown by the points S, $’ and M for such an interstitial
vortex. The centre point M of the triangle on figure 10 is the only stable location for the
interstitial vortex. The saddle point S at the midpoint on the line between two vortices is
highly unstable for displacements off this line.

The saddle point 8 is the distance r =

1D and the centre point M is at the distance
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Figure 9. Dependence of the force on an interstitial vottex on its radial position r relative to
vortex V of figure 10 for three different angles. The angle 8 == 0 corresponds to the line V-S-V’

and & = 30° comresponds to the line V-M-8' of figure 10.

Figure 10. Sketch of the force lines involving an interstitial vortex. The calculations use a
coordinate system with V at the origin, with the line V8-V’ comesponding to D = 0, and

V-M-5' comresponding to § = 30°,

r= D/\/§ from the vortex v, and within the range 0.5 < {r/D) < 1 /«/-?: the magnitude of

the force for each angle goes through a minimum. In addition, within this range the curves
cross over and reverse their order in terms of magnitude. Detailed caleulations were carried
out for this range of r/D, and the results shown in figure 11 reveal that the force exerted
on the interstitial vortex increases monotonically for fixed radial displacements of r = 0.46
and r = 0.5 for increasing angle, while it stays almost constant for r = 0.54. The next
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two cases of r = 0.58 and r = 0.62 show the opposite behaviour with the force decreasing
monotonically for increasing angle.

Force on the Interstitial Vortex
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Figure 11. Dependence of the foree exerted on the radial displacement r of an interstitial vortex
at the angle & = 30° for three lattice separations D/A = 112, 1, 2.

We note from figure 10 that over this region of distance the force is toward the central
point M, pointing in a direction almost perpendicular to the line V-S5-V.

Force calculations were carried out for the angle ¢ = 30° with the three vortex
separations D/A = 1/2, 1 and 2. The results presented in figure 12 show that the separation
of vortices strongly affects the magnitude of the force as shown in figure 12, unlike the
former case of a displaced vortex in figure 9 where the magnitude of the force only changes
slightly.

6. Discussion

It was found that during the first simulation, small domains with different alignments appear
and grow as has been observed in decoration experiments [8-12]. Eventually, one of the
domains aligned with an edge engulfs others and proceeds to extend throughout the vortex
population. The edges were a dominant factor in determining the alignment of the hexagons.
Such surface effects have been reported by others [13-15].

In the second simulation, the initial random vortices were placed away from edges
so that at the early stages of the simulation the rearrangements were not influenced by
the edges. The final arbitrary alignment of the large central domain shows the stability
and cohesiveness of a well formed hexagonal region. During early stages of expansion
the vortex region retzined its initial square shape while the vortex population expanded
isotopically outward into the larger square.

The 400 vortices that were selected for carrying out the simulations is typical of the
number that might be in one grain of a high-temperature superconductor. This may be
shown by equating the total flux BA in a grain of cross sectional area A to the number
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Figure 12. Force dependence on the radial displacement » of an interstitial vortex at the angle
& = 30° for three lattice separations O/A =1/2, 1, 2.

of fluxons N times the quantum of flux ®p = 2.0679 x 10~ T M?, and this gives for the
internal magnetic field By, within the grain

B, = ndp/A. (4)

Therefore a typical superconducting grain of area 1 um? containing N = 400 vortices will
have an internal field of 0.8 T. The externally applied field B,,, that produces this internal
field will be larger than 0.8 T because (a) the superconductor has a negative susceptibility,
and (b) the typical high-temperature superconductor penetration depth of 9.1 pm causes the
effective area of superconducting material inside the penetration depth to be only about 2/3
of the actual area. Thus the number of vortices chosen for the simulations was typical of
that in a high-superconductor grain. Simulations representative of much larger grain sizes
or much larger applied fields could be carried out using periodic boundary conditions [16].

The calculations of the force exerted on an improperly positioned vortex on a regular
hexagonal lattice reveal that it is the same order of magnitude as the force between two
isolated vortices, and about ten times larger than the force on an interstitial vortex. Therefore
any pinning force which may cause this type of displacement must be as strong as this
calculated force for it to pin down the vortex at such a position.

The simulation technique that we used does not take into account the possibility of
different vortex phases such as the liquid or glassy state, or the refinements of flux lattice
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melting and fiux creep. These phenomena only occur at finite temperatures, and so cannot
be simulated by a method which takes no account of thermal effects. Pinning centres could
be included in the simulations, but no attempt was made to do so.

In the present work we have calculated the configuration for 7 = 0. Typically, at
temperatures different from zero, the excited state configurations involving fluctuations
in vortex positions 16-23 occur with probabilities that depend on the energy and the
temperature. We only keep configurations that minimize the force comresponding to the
minimum ground state for T = 0. The force calculations between vortices do not give the
energy change of different vortex configurations in a simple way. In order to include the
temperature effect, it is necessary to evaluate the total energy of the system of vortices
each time a move is made, and this would require an enormous amount of computer time.
Simulations for T > 0 are more appropriately carried out using Monte Carlo techniques
[24,25] that will be commented upon below,

If thermal effects were taken into account then higher temperatures would involve a
slower approach to equilibrium and a final equilibrium state, and this final state would have
some vortices displaced from their regular hexadic positions due to thermal fluctuations.
The regular hexadic arrangement is the equilibrium configuration for T = (. Vortex lattice
melting [26-29] and flux creep [30-34], which occur at finite temperatures, could not be
taken into account. Recent articles discuss models, calculations and simulations of lattice
melting {35-40] and flux creep [41-45].

Other approaches have been employed to carry out calculations of vortex lattices [46].
The Lorentz equations have been employed to simulate the lattice {47], and a number of
Monte Carlo simulations [44, 45,48, 49] have been published. These articles do not report
the type of data that were presented here, so our results are not directly comparable with
theirs. The Monte Carlo technique has the advantage of being based on energy calculations,
so it permits the determination of the specific heat [39,48] which is not readily found by
the force calculation method.
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