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Abstract. The repulsive Lome force between two vortices in high-K superconductors with 
the vortices aligned along the direction of axial symmeuy was calculated by approximating the 
numerical intend by a set of polynomials to speed up the computations. Calculations were 
carried out ta simulate formation of hexagonal vortex lattice fiom a population of 4W initially 
randomly distributed vortices. Small domains with different alignments of vortices were found 
at the early stages and a single large domain with hexagonal order aligned with the edges 
emerged at lhe end. Also, the expansion of a vortex population was simulated and it kept its 
initial shap while it expanded isotopically outward into a larger area The force exerted on 
a displaced vortex io an otherwise prfect latlice was calculated and it was found to be aboul 
the same order of magnitude as the force between two isolated vortices, and about ten times 
stronger than the force exerted on an extra interstitial vortex. 

1. Introduction 

One of the main problems that holds up the development of material high-temperature 
superconductors is the necessity to acquire a more complete understanding of the dynamics 
of flux lattice motion. Such motion involves the motion of individual vortices acting under 
the influence of strong forces from nearby vortices and weaker forces from more distant 
vortices. Pinning centres exert forces which can hold vortices in place, and the presence 
of transport current adds an additional force. The application of an applied magnetic field 
causes vortices to move into the superconductor. Vortices in motion also experience magnus 
forces and frictional drag forces. A proper understanding of how non-equilibrium vortex 
configurations evolve toward configurations that are in equilibrium with the internal and 
external forces can lead to the development of critical current enhancement techniques. 

In the present article we will study the motion of an initial random distribution of 
vortices as they rearrange themselves into a final close-to-equilibrium configuration of a 
hexadic type. We will also investigate the force on a vortex displaced from its equilibrium 
position on an otherwise perfect hexadic lattice, and the force on an extra vortex at an 
arbitrary interstitial location in a perfect hexadic lattice. 

2. Vortex arrays 

At the lower critical field Hc,, an applied magnetic field starts to penetrate a type-II 
superconductor in the form of quantized magnetic vortices [l] carrying a quantum of flux 
aO, A vortex consists of a normal-like region called the core with a radius equal to the 
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coherence length 6 ,  and a region of circulating screening current J with a radius equal to 
the penetration depth A. When the density of vortices is so low that their average separation 
is much larger than A, the forces between them can easily be calculated through the Lorentz 
force expression, F = J x Qo, since the currents of one vortex can be assumed uniform 
over the region of the other vortex [2]. When the density of vortices increases to a point 
where the average distance between them is comparable with A, then the force can no longer 
be calculated in this simple way, so the integral of J x B must be evaluated. 

In this paper, first the Lorentz force was evaluated through the numerical integration 
of J x B, and then this integral was replaced by a polynomial approximation to shorten 
the computer time. The formation of a hexagonal vortex lattice was simulated starting with 
a random population of 400 vortices. Then the expansion of a random vortex area into a 
larger area was simulated. In the last section, the force exerted on a displaced and on an 
interstitial vortex in an otherwise perfect hexagonal vortex lattice was studied. 

3. Lorentz force between two vortices 

The London equations can be used to treat the vortices up to the density where they have the 
separation D = 5.4< [3,4] which corresponds to an applied field of about if& for K = A/< 
= 100. This approach is especially appropriate for high-K cases such as the cuprates, where 
the core region can be treated as point-like compared with the penetration depth A, 

The field and the current distributions of a single vortex obtained by solving the London 
equations in an isotropic plane are given by [5,6] 

where Ko(r/A) and Kl(r/h)  are zeroth- and first-order modified Bessel functions, 
respectively. The vortices are assumed to be aligned with the symmetry of the axially 
symmetric superconductor. 

4 n ' I  

VI  V Z  

Figure 1. Position mordinates used for lhe calculation oflhe LnrenL? force behveen WO vonices 
by inlegration. JI  and J2 are circulalhg supercurrents of vortices V I  and v2. 

Using the field and the current distributions given by equations ( I )  and (2). the 
differential force density df(r) exerted at the point P in figure 1 on the screening current 
of vortex v2 by the field of the vortex v l  is given by 

(3) df(r) = dJzW x &(lr - DI) 
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where D is the separation of the two vortices. The force on the whole current ring of radius 
r is then the integral of d f ( r )  over the ring. Another integral over the rings with different 
radii gives the total force per unit length F(D) exerted on the vortex v2 by the vortex v l .  
Since we are not interested in the length of the vortices we wiU call F(D)  simply the force 
between vortices. This Lorentz force is along the line that connects the two vortices, and 
is repulsive. Figure 2 shows this force F(D) calculated as a function of their separation. 
The plot is normalized to a value close to 1 at its maximum point, and this normalization 
condition is used for the rest of the paper. 

The force F(D)  goes to zero as the separation D goes to zero at the total overlap 
of vortices. It must, however, be remembered that the superconductivity is lost when the 
average separation becomes comparable with the coherence length. The repulsive force 
reaches its maximum at about D = 0.5A. 

1 0 ,  
The Lorentz Force 

Between Two 
Vortices 

0-) integrat,on 
0.6# --> Polynomial 

0.04  ' : . ~ 

0 2 4 
Radial Distance (D/h) 

Figure 3. Polynomial fit (-) to the calculated force 
points (0) of figure 2. 

Figore 2 Dependence of the force between WO 
vortices on their separation D. The force is normalized 
to 0.95 at the maximum. md the separation is 
normalized to the penetration depth A, 

The numerical integral calculations take about 1-2 s of CPU time per pair of vortices. 
When many vortices are present, the force F on a particular v o a x  at position ro is the 
vector sum of the forces F, (r1 - a) exerted on it by all the other vortices. Computations 
involving many vortices cm be limited by the available computer time. For example 
a simulation involving 400 vortices requires 16OOOO force calculations for a single step 
toward determining the total forces on all the vortices, and this can add up to 50 or more 
hours of CPU time. Using a linear regressional fit. a set of polynomials was fitted to the 
force curve of figure 2. This considerably reduces the computer time, and the result plotted 
in figure 3 shows the excellent agreement between the actual integration and the polynomial 
approximation for the range 0 < D c 6A. 

4. Simulations of a vortex lattice 

The repulsive Lorentz force causes the vortices to average themselves on a triangular lattice 
to their lowest-energy state. The formation of this vortex lattice is studied by calculations 
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which involve the determination of the force on an individual vortex arising from the vector 
sum of the forces from each of the remaining 399 vortices. The magnitude of each such 
individual force is obtained from the polynomial approximation. After obtaining this net 
force the vortex is moved a distance Ar in the direction of this force, with all of the other 
vortices held in place. 

Vortices near the edge of the superconductor experience an additional surface force 
from the applied external field which prevents them from leaving the material. This surface 
repulsive force is assumed to decay exponentially with distance from the surface to the 
inside. Thus a vortex a distance d from the edge experiences the force acting away 
from the edge. The value of FO was found by trial and error such that the vortices are held 
inside the superconducting material within one penetration depth A of the edge. 

The net force acting on each vortex is thus the sum of the Lorentz forces from the other 
399 vortices plus the sum of the forces from the four edges of the square region containing 
the vortices. Since the vortex motion involves displacements Ar that are determined by this 
net force there is no equation of motion needed to describe the displacements. The vortices 
remain fixed in position between iterations, and only one vortex is displaced at a time. 

To start with the simulation, 400 random vortices are put in a square with sides equal 
to 40 A. One vortex is selected and the vector force on it due to the remaining 399 vortices 
plus that from the four edges is calculated. The vortex is then moved a distance Ar = 0. Ik 
in the direction of this force. This process is then repeated for the remaining 399 vortices. 
The resulting change in vortex configuration from the initial random one is called a move. 
The whole process itself is repeated until the effect of further iterations becomes negligible. 
After every 10 or 20 moves the distance of the displacement Ar is decreased until it becomes 
0.01A for the final 300 moves. 

Figure 4 shows the initial random vortex distribution. Figures 4(b) to 4(d) display the 
evolution toward a hexagonal arrangement. Figure 4(b) exhibits the beginning of triangular 
short-range order in the centre and linear alignment along the edges after 50 moves. Then 
400 moves later we see from figure 4(c) that the hexagons are more regular, those near 
edges tend to align with edges, and centrally located vortices tend to align with the left and 
right edges. At the corners, vortices tend to fonn square patterns in order to comply with the 
corner geometry. At this stage there are not many regular hexagons. Figure 4(d) confirms 
the left-right edge alignment which covers most of the square with a regular hexagonal 
order after 2030 moves. 

Thus from the beginning, the edge effect is a dominant factor in determining the final 
alignment of hexagons. In order to minimize the edge effect, an initial random vortex 
distribution was established in a 202. x 20A square region at the centre of a 40A x 40A 
square away from the edges. This reduces the influence of edges on the vortices at the 
early stages of the iteration. Figure 5(a) shows the initial random arrangement. After 50 
moves, figure 5(b) displays the outward advancement of the vortex region. Apart from 
expanding outward, the vortices reach a fairly uniform distribution among themselves with 
the beginnings of hexagonal order, and they start to pile up at the boundary while the 
boundary keeps Its square shape. After 400 moves, figure 5(c) displays the growth of the 
hexagonally ordered central domain in which the hexagons are not aligned with the edges. 
The vortices pile up along edges and at comers. Figure 5(d) after ZOO0 moves shows that 
the central domain grows to a larger area and becomes more regular while it still does not 
align with the edges. The pre-established hexagonal order in the centre is relatively stable 
against the edge effect. 

When the final pictures of these two different simulations are examined, we see that 
the long-range hexagonal order is broken at the boundaries of domains where there are 
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0 10 20 30 40 

Figure 4. Plots of positions of400 vortices on 4OA x4Oh square. (a) Initial random mgement ,  
@) 50 moves later, (c) ?.Elm 400 moves, and (d) after 2000 moves. 

deformed hexagons. A deformed hexagon of a simplest type has a displaced vortex or an 
extra (interstitial) vortex within an hexagonal unit. By examining the force exerted on these 
'improperly located' vortices, we may get an insight on the strength of a possible pinning 
which may lead to similar kinds of deformed hexagons. 

5. Defects in a vortex lanice 

The simplest case to treat is that of one improperly located vortex in an otherwise perfect 
hexagonal vortex lattice. Although this may represent an oversimplification, it could give 
us some basic insights on the behaviour of defects. 3 x 0  cases were treated; (a) a displaced 
vortex, and @) an interstitial vortex. 

(a) Displaced vortex. The triangular vortex lattice was viewed from a central lattice 
point with surrounding hexagonal vortex rings. The displacement of the vortex at this point 
was studied by assuming that all the other vortices in the lattice are held at their proper 
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Figure 5. plots of positions of 400 vortices placed initially in a 20A x 20A square =need inside 
a 401 x 40A square. (a) Initial random position, (b) expansion after 50 moves, ( c )  &er 400 
moves, and (d) configuration after 20W moves. 

hexagonal sites. The displacement was specified by a radial distance r,  and angle 4 as seen 
in figure 6.  The total force on this displaced vortex was calculated for a series of angles 
4, and radial displacements r .  Figure 7 shows the radial dependence of the force exerted 
on the displaced vortex where two extreme cases of angles (@ = 0" and $ = 30") were 
plotted. It is sufficient to cover the angular range of 0" < 4 < 30" because of the 12-fold 
symeby .  The force rises linearly for both angles when the displacement r is small, and it 
is always directed toward the centre of the hexagon (the angles of the force are not shown 
in the figure). This resembles the restoring force of a spring. We see from figure 8 that the 
force is greater for D = A than it is for D = &h and D = 2A but the change in magnitude 
is small. 

@) Inferstitid vortex. Another possible type of defect is having an extra vortex inserted 
at an interstitial position in the lattice. The same kind of calculation was repeated for this 
case, and the results are plotted in figure 9 for three angles 4 = 0". 15", 30". The $ = 0 
line goes from vortex v to v' through the saddle points, the 4 = 30" line goes from vortex v 
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Figure 6. Vonex (designated by a hollow circle) shown displaced al the position, (r, E )  from 
the centre of the regular hexagon D is the separation of vortices in thz lattice. 

Force exerted on the Disploced Vortex 
1.21: : :  I : ,  ~ l : : ,  I : : , : :  I e=o 

Displaced Vortex 
(Force as o function of  D) 

1.41 , . / : , . I ) , , ; . ,  : . . : I  
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Figure 7. Dependence or the force ex& on the 
displaced vortex of figure 6. on the radial displacement 
1. The circles are for radial displacements al the angle 
E = O D ,  and the triangles for displacements at the angle 
9 = 30'. 

Figure 8. Dependence of the force on lhe displaced 
vortex of figure 6 on the radial displacement I at the 
angle e = Oo for three lattice separations D / I  = I/% 
1.2. 

through the midpoint M and then through the saddle point S', using the notation of figure 10. 
There are two equilibrium positions shown by the points S, S' and M for such an interstitial 
vortex. The centre point M of the triangle on figure 10 is the only stable location for the 
interstitial vortex. The saddle point S at the midpoint on the line between two vortices is 
highly unstable for displacements off thii line. 

The saddle point S is the distance r = i D  and the centre point M is at the distance 



7380 S Aktas et a1 

Force on ihe Interstiid Vortex 
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Rodial Displacement (r/D) 
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F i p  9. Dependence of the force on an interstitial vortex on its d i a l  position r relative to 
v o r m  V of figure 10 for three different angles. The angle 9 = 0 CMeSponds to the line VS-V' 
and e = 30' caesponds to the Line V-MS' of figure 10. 

Figure 10. Sketch of the force lines involving an interstitial vortex. The calculations use a 
coordinate system with V at the onpin, with the line V-S-V' ccmsponding to D = 0, and 
V-MS' carresponding to E = 30'. 

r = D / &  from the vortex v, and within the range 0.5 < ( r / D )  c 1 1 4  the magnitude of 
the force for each angle goes through a minimum. In addition, within this range the curves 
cross over and reverse their order in terms of magnihide. Detailed calculations were carried 
out for this range of r / D ,  and the results shown in figure 11 reveal that the force exerted 
on the interstitial vortex increases monotonically for fixed radial displacements of r = 0.46 
and r = 0.5 for increasing angle, while it stays almost constant for r = 0.54. The next 
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two cases of r = 0.58 and r = 0.62 show the opposite behaviour with the force decreasing 
monotonically for increasing angle. 

Force on the Interstitial Vortex 

O.*O m 

.. 1 0  .-. 
0.00 

0 10 20 30 
Angle(@ 

Figure 11. Dependence of the force exerted on the radial displacement I of an interstitial vortex 
at the angle e = 3O0 for three lattice sepaxations D / k =  lt2, 1.2. 

We note from figure 10 that over this region of distance the force is toward the central 
point M, pointing in a direction almost perpendicular to the line V-S-V. 

Force calculations were carried out for the angle @ = 30" with the three vortex 
separations D j h  = 1/2, I and 2. The results presented in figure 12 show that the separation 
of vortices strongly affects the magnitude of the force as shown in figure 12, unlike the 
former case of a displaced vortex in figure 9 where the magnitude of the force only changes 
slightly. 

6. Discussion 

It was found that during the first simulation, small domains with different alignments appear 
and grow as has been observed in decoration experiments [&121. Eventually, one of the 
domains aligned with an edge engulfs others and proceeds to extend throughout the vortex 
population. The edges were a dominant factor in determining the alignment of the hexagons. 
Such surface effects have been reported by others [13-151. 

In the second simulation, the initial random vortices were placed away from edges 
so that at the early stag= of the simulation the rearrangements were not influenced by 
the edges. The final arbitrary alignment of the large central domain shows the stability 
and cohesiveness of a well formed hexagonal region. During early stages of expansion 
the vortex region retained its initial square shape while the vortex population expanded 
isotopically outward into the larger square. 

The 400 vortices that were selected for canying out the simulations is typical of the 
number that might be in one grain of a high-temperature superconductor. This may be 
shown by equating the total flux BA in a grain of cross sectional area A to the number 
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Figure 12. Force dependence on the radial displacement r of an interstitial voItex at the angle 
e = 30° for three lattice separations D fh = ID. I .  z 

of fluxons N times the quantum of flux 
internal magnetic field Bin within the grain 

= 2.0679 x 10-15TM2, and this gives for the 

Bin = nOo/A. (4) 

Therefore a typical superconducting grain of area 1 pm2 containing N = 400 vortices will 
have an internal field of 0.8 T. The externally applied field B,, that produces this internal 
field will be larger than 0.8 T because (a) the superconductor has a negative susceptibility, 
and (b) the typical high-temperature superconductor penetration depth of 0.1 p n  causes the 
effective area of superconducting material inside the penetration depth to be only about 2/3 
of the actual area. Thus the number of vortices chosen for the simulations was typical of 
that in a high-superconductor g a i n .  Simulations representative of much larger grain sizes 
or much larger applied fields could be carried out using periodic boundary conditions [16]. 

The calculations of the force exerted on an improperly positioned vortex on a regular 
hexagonal lattice reveal that it is the same order of magnitude as the force between two 
isolated vortices, and about ten times larger than the force on an interstitial vortex. Therefore 
any pinning force which may cause this type of displacement must be as strong as this 
calculated force for it to pin down the vortex at such a position. 

The simulation technique that we used does not take into account the possibility of 
different vortex phases such as the liquid or glassy state, or the refinements of flux lattice 
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melting and flux creep. These phenomena only occur at finite temperatures, and so cannot 
be simulated by a method which takes no account of thermal effects. Pinning centres could 
be included in the simulations, but no attempt was made to do so. 

In the present work we have calculated the configuration for T = 0. Typically, at 
temperatures different from zero, the excited state configurations involving fluctuations 
in vortex positions 16-23 occur with probabilities that depend on the energy and the 
temperature. We only keep configurations that minimize the force corresponding to the 
minimum ground state for T = 0. The force calculations between vortices do not give the 
energy change of different vortex configurations in a simple way. In order to include the 
temperature effect, it is necessary to evaluate the total energy of the system of vortices 
each time a move is made, and this would require an enormous amount of computer time. 
Simulations for T z 0 are more appropriately canied out using Monte Carlo techniques 
[24,25] that will be commented upon below. 

If thermal effects were taken into account then higher temperatures would involve a 
slower approach to equilibrium and a final equilibrium state, and this final state would have 
some vortices displaced from their regular hexadic positions due to thermal fluctuations. 
The regular hexadic arrangement is the equilibrium configuration for T = 0. Vortex lattice 
melting [26-291 and flux creep 130-341, which occur at finite temperatures, could not be 
taken into account. Recent articles discuss models, calculations and simulations of lattice 
melting [35-40] and flux creep [41455]. 

Other approaches have been employed to cany out calculations of vortex lattices 1461. 
The Lorentz equations have been employed to simulate the lattice [47], and a number of 
Monte Carlo simulations [44,45,48,491 have been published. These articles do not report 
the type of data that were presented here, so our results are not directly comparable with 
theirs. The Monte Carlo technique has the advantage of being based on energy calculations, 
so it permits the determination of the specific heat [39,48] which is not readily found by 
the force calculation method. 
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